Data Sheet, V1.2, Aug. 2006
XC164D-16F/16R
XC164D-8F/8R
16-Bit Single-Chip Microcontroller
with C166SV2 Core
Microcontrollers
Edition 2006-08
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Data Sheet, V1.2, Aug. 2006
XC164D-16F/16R
XC164D-8F/8R
16-Bit Single-Chip Microcontroller
with C166SV2 Core
Microcontrollers
XC164D
Derivatives
XC164D
Revision History: V1.2, 2006-08
Previous Version(s):
V1.1, 2006-03
V1.0, 2005-01
Page
Subjects (major changes since last revision)
6
New derivatives added.
11
Description of the TRST signal modified.
47
Instructions Set Summary improved.
50
Footnote added about pin XTAL1 belonging to VDDI power domain.
54
Footnote added about amplitude at XTAL1 pin.
70
Thermal Resistance: RTHA replaced by RΘJC and RΘJL because RTHA
strongly depends on the external system (PCB, environment). PDISS
removed, because no static parameter, but derived from thermal
resistance.
71
Green Package added.
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com
Data Sheet
V1.2, 2006-08
XC164D
Derivatives
Table of Contents
Table of Contents
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
2.2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Capture/Compare Units (CAPCOM1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Capture/Compare Unit (CAPCOM6) . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Timer Unit (GPT12E) . . . . . . . . . . . . . . . . . . . . . . . . . . .
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) . . . . . . . . . .
High Speed Synchronous Serial Channels (SSC0/SSC1) . . . . . . . . . . . .
TwinCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
19
21
22
24
29
29
32
33
37
39
40
41
43
44
44
46
47
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-chip Flash Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Clock Drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
50
53
58
58
62
63
64
65
5
5.1
5.2
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Data Sheet
3
V1.2, 2006-08
16-Bit Single-Chip Microcontroller with C166SV2 Core
XC166 Family
1
•
•
•
•
•
•
•
•
•
XC164D
Summary of Features
High Performance 16-bit CPU with 5-Stage Pipeline
– 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution)
– 1-Cycle Multiplication (16 × 16 bit), Background Division (32 / 16 bit) in 21 Cycles
– 1-Cycle Multiply-and-Accumulate (MAC) Instructions
– Enhanced Boolean Bit Manipulation Facilities
– Zero-Cycle Jump Execution
– Additional Instructions to Support HLL and Operating Systems
– Register-Based Design with Multiple Variable Register Banks
– Fast Context Switching Support with Two Additional Local Register Banks
– 16 Mbytes Total Linear Address Space for Code and Data
– 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)
16-Priority-Level Interrupt System with up to 75 Sources, Sample-Rate down to 50 ns
8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via
Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space
Clock Generation via on-chip PLL (factors 1:0.15 … 1:10), or
via Prescaler (factors 1:1 … 60:1)
On-Chip Memory Modules
– 2 Kbytes On-Chip Dual-Port RAM (DPRAM)
– 2/4 Kbytes On-Chip Data SRAM (DSRAM)1)
– 2 Kbytes On-Chip Program/Data SRAM (PSRAM)
– 64/128 Kbytes On-Chip Program Memory (Flash Memory or Mask ROM)1)
On-Chip Peripheral Modules
– Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins)
– Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6)
(3/6 Capture/Compare Channels and 1 Compare Channel)
– Multi-Functional General Purpose Timer Unit with 5 Timers
– Two Synchronous/Asynchronous Serial Channels (USARTs)
– Two High-Speed-Synchronous Serial Channels
– On-Chip TwinCAN Interface (Rev. 2.0B active) with 32 Message Objects
(Full CAN/Basic CAN) on Two CAN Nodes, and Gateway Functionality
– On-Chip Real Time Clock
Idle, Sleep, and Power Down Modes with Flexible Power Management
Programmable Watchdog Timer and Oscillator Watchdog
Up to 12 Mbytes External Address Space for Code and Data
1) Depends on the respective derivative. The derivatives are listed in Table 1.
Data Sheet
4
V1.2, 2006-08
XC164D
Derivatives
Summary of Features
•
•
•
•
•
– Programmable External Bus Characteristics for Different Address Ranges
– Multiplexed or Demultiplexed External Address/Data Buses
– Selectable Address Bus Width
– 16-Bit or 8-Bit Data Bus Width
– Four Programmable Chip-Select Signals
Up to 79 General Purpose I/O Lines,
partly with Selectable Input Thresholds and Hysteresis
On-Chip Bootstrap Loader
Supported by a Large Range of Development Tools like C-Compilers,
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,
Simulators, Logic Analyzer Disassemblers, Programming Boards
On-Chip Debug Support via JTAG Interface
100-Pin Green TQFP Package, 0.5 mm (19.7 mil) pitch (RoHS compliant)
Ordering Information
The ordering code for Infineon microcontrollers provides an exact reference to the
required product. This ordering code identifies:
•
•
the derivative itself, i.e. its function set, the temperature range, and the supply voltage
the package and the type of delivery.
For the available ordering codes for the XC164D please refer to your responsible sales
representative or your local distributor.
Note: The ordering codes for Mask-ROM versions are defined for each product after
verification of the respective ROM code.
This document describes several derivatives of the XC164D group. Table 1 enumerates
these derivatives and summarizes the differences. As this document refers to all of these
derivatives, some descriptions may not apply to a specific product.
For simplicity all versions are referred to by the term XC164D throughout this document.
Data Sheet
5
V1.2, 2006-08
XC164D
Derivatives
Summary of Features
Table 1
XC164D Derivative Synopsis
Derivative1)
Temp.
Range
SAF-XC164D-16F40F
-40 °C to 128 Kbytes 2 Kbytes DPRAM,
85 °C
Flash
4 Kbytes DSRAM,
2 Kbytes PSRAM
-40 °C to
SAF-XC164D-16F20F
Program
Memory
On-Chip RAM
85 °C
Interfaces
Clock
ASC0,
ASC1,
SSC0,
SSC1,
CAN0,
CAN1,
CC6
40 MHz
20 MHz
SAF-XC164D-8F40F
-40 °C to 64 Kbytes
85 °C
Flash
SAF-XC164D-8F20F
-40 °C to
85 °C
SAF-XC164D-16R40F
-40 °C to 128 Kbytes 2 Kbytes DPRAM,
85 °C
ROM
4 Kbytes DSRAM,
2 Kbytes PSRAM
-40 °C to
40 MHz
SAF-XC164D-8R40F
-40 °C to 64 Kbytes
85 °C
ROM
40 MHz
SAF-XC164D-8R20F
-40 °C to
85 °C
SAF-XC164D-16R20F
2 Kbytes DPRAM,
2 Kbytes DSRAM,
2 Kbytes PSRAM
40 MHz
20 MHz
20 MHz
85 °C
2 Kbytes DPRAM,
2 Kbytes DSRAM,
2 Kbytes PSRAM
20 MHz
1) This Data Sheet is valid for devices starting with and including design step BB.
Data Sheet
6
V1.2, 2006-08
XC164D
Derivatives
General Device Information
2
General Device Information
2.1
Introduction
The XC164D derivatives are high-performance members of the Infineon XC166 Family
of full featured single-chip CMOS microcontrollers. These devices extend the
functionality and performance of the C166 Family in terms of instructions (MAC unit),
peripherals, and speed. They combine high CPU performance (up to 40 million
instructions per second) with high peripheral functionality and enhanced IO-capabilities.
They also provide clock generation via PLL and various on-chip memory modules such
as program Flash, program RAM, and data RAM.
VDDI/P
VSSI/P
Port 0
16 bit
XTAL1
Port 1
16 bit
XTAL2
NMI
Port 3
14 bit
RSTIN
RSTOUT
XC164D
Port 4
8 bit
EA
Port 20
5 bit
ALE
RD
WR/WRL
Port 5
14 bit
Port 9
6 bit
TRST
JTAG
Debug
via Port 3
MCA05554_XC164D
Figure 1
Data Sheet
Logic Symbol
7
V1.2, 2006-08
XC164D
Derivatives
General Device Information
2.2
Pin Configuration and Definition
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
XTAL1
XTAL2
V SSI
V DDI
P1H.7/A15/CC27IO/EX7IN
P1H.6/A14/CC26IO/EX6IN
P1H.5/A13/CC25IO/EX5IN
P1H.4/A12/CC24IO/EX4IN
P1H.3/A11/T7IN/SCLK1/EX3IN/E*)
P1H.2/A10/C6P2/MTSR1/EX2IN
P1H.1/A9/C6P1/MRST1/EX1IN
P1H.0/A8/C6P0/CC23IO/EX0IN
V SSP
V DDP
P1L.7/A7/CTRAP/CC22IO
P1L.6/A6/COUT63
P1L.5/A5/COUT62
P1L.4/A4/CC62
P1L.3/A3/COUT61
P1L.2/A2/CC61
P1L.1/A1/COUT60
P1L.0/A0/CC60
P0H.7/AD15
P0H.6/AD14
P0H.5/AD13
The pins of the XC164D are described in detail in Table 2, including all their alternate
functions. Figure 2 summarizes all pins in a condensed way, showing their location on
the 4 sides of the package. E*) and C*) mark pins to be used as alternate external
interrupt inputs, C*) marks pins that can have CAN interface lines assigned to them.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
XC164D
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P0H.4/AD12
P0L.7/AD7
P0L.6/AD6
P0L.5/AD5
P0L.4/AD4
P0L.3/AD3
P0L.2/AD2
P0L.1/AD1
P0L.0/AD0
P20.5/EA
P20.4/ALE
P20.1/WR/WRL
P20.0/RD
VSSP
VDDP
P4.7/A23/C*)
P4.6/A22/C*)
P4.5/A21/C*)
P4.4/A20/C*)
P4.3/A19/CS0
P4.2/A18/CS1
P4.1/A17/CS2
P4.0/A16/CS3
P3.15/CLKOUT/FOUT
P3.13/SCLK0/E*)
P5.6
P5.7
res
res
P5.12/T6IN
P5.13/T5IN
P5.14/T4EUD
P5.15/T2EUD
V SSI
VDD I
TRST
VSSP
VD DP
P3.1/T6OUT/RxD1/TCK/E*)
P3.2/CAPIN/TDI
P3.3/T3OUT/TDO
P3.4/T3EUD/TMS
P3.5/T4IN/TxD1/BRKOUT
P3.6/T3IN
P3.7/T2IN/BRKIN
P3.8/MRST0
P3.9/MTSR0
P3.10/TxD0/E*)
P3.11/RxD0/E*)
P3.12/BHE/WRH/E*)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
RSTIN
P20.12/RSTOUT
NMI
P0H.0/AD8
P0H.1/AD9
P0H.2/AD10
P0H.3/AD11
VSSP
V DDP
P9.0/CC16IO/C*)
P9.1/CC17IO/C*)
P9.2/CC18IO/C*)
P9.3/CC19IO/C*)
P9.4/CC20IO
P9.5/CC21IO
VSSP
V DDP
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.10/T6EUD
P5.11/T5EUD
Figure 2
Data Sheet
MCP06457D
Pin Configuration (top view)
8
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions
Symbol Pin
Num.
Input
Outp.
Function
RSTIN
I
Reset Input with Schmitt-Trigger characteristics. A low level
at this pin while the oscillator is running resets the XC164D.
A spike filter suppresses input pulses < 10 ns. Input pulses
> 100 ns safely pass the filter. The minimum duration for a
safe recognition should be 100 ns + 2 CPU clock cycles.
1
Note: The reset duration must be sufficient to let the
hardware configuration signals settle.
External circuitry must guarantee low level at the
RSTIN pin at least until both power supply voltages
have reached the operating range.
P20.12
2
IO
For details, please refer to the description of P20.
NMI
3
I
Non-Maskable Interrupt Input. A high to low transition at this
pin causes the CPU to vector to the NMI trap routine. When
the PWRDN (power down) instruction is executed, the NMI
pin must be low in order to force the XC164D into power
down mode. If NMI is high, when PWRDN is executed, the
part will continue to run in normal mode.
If not used, pin NMI should be pulled high externally.
P0H.0P0H.3
4…7
IO
For details, please refer to the description of PORT0.
Data Sheet
9
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
P9
IO
Port 9 is a 6-bit bidirectional I/O port. Each pin can be
programmed for input (output driver in high-impedance
state) or output (configurable as push/pull or open drain
driver). The input threshold of Port 9 is selectable (standard
or special).
The following Port 9 pins also serve for alternate functions:1)
CC16IO
CAPCOM2: CC16 Capture Inp./Compare Outp.,
CAN1_RxD CAN Node B Receive Data Input,
EX7IN
Fast External Interrupt 7 Input (alternate pin B)
CC17IO
CAPCOM2: CC17 Capture Inp./Compare Outp.,
CAN1_TxD CAN Node B Transmit Data Output,
EX6IN
Fast External Interrupt 6 Input (alternate pin B)
CC18IO
CAPCOM2: CC18 Capture Inp./Compare Outp.,
CAN0_RxD CAN Node A Receive Data Input,
EX7IN
Fast External Interrupt 7 Input (alternate pin A)
CC19IO
CAPCOM2: CC19 Capture Inp./Compare Outp.,
CAN0_TxD CAN Node A Transmit Data Output,
EX6IN
Fast External Interrupt 6 Input (alternate pin A)
CC20IO
CAPCOM2: CC20 Capture Inp./Compare Outp.
CC21IO
CAPCOM2: CC21 Capture Inp./Compare Outp.
P9.0
10
P9.1
11
P9.2
12
P9.3
13
P9.4
P9.5
14
15
P5
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.10
P5.11
P5.6
P5.7
P5.12
P5.13
P5.14
P5.15
18
19
20
21
22
23
24
25
26
27
30
31
32
33
Data Sheet
I/O
I
I
I/O
O
I
I/O
I
I
I/O
O
I
I/O
I/O
I
Port 5 is a 14-bit input-only port.
Some pins of Port 5 serve as timer inputs:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
T6EUD
GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.
T5EUD
GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.
No Alternate Function beside General Purpose Input
No Alternate Function beside General Purpose Input
T6IN
GPT2 Timer T6 Count/Gate Input
T5IN
GPT2 Timer T5 Count/Gate Input
T4EUD
GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.
T2EUD
GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.
10
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
TRST
I
Test-System Reset Input. For normal system operation, pin
TRST should be held low. A high level at this pin at the rising
edge of RSTIN activates the XC164CM’s debug system. In
this case, pin TRST must be driven low once to reset the
debug system.
36
Data Sheet
11
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
P3
IO
Port 3 is a 14-bit bidirectional I/O port. Each pin can be
programmed for input (output driver in high-impedance
state) or output (configurable as push/pull or open drain
driver). The input threshold of Port 3 is selectable (standard
or special).
The following Port 3 pins also serve for alternate functions:
T6OUT
GPT2 Timer T6 Toggle Latch Output,
RxD1
ASC1 Data Input (Async.) or Inp./Outp. (Sync.),
EX1IN
Fast External Interrupt 1 Input (alternate pin A),
TCK
Debug System: JTAG Clock Input
CAPIN
GPT2 Register CAPREL Capture Input,
TDI
Debug System: JTAG Data In
T3OUT
GPT1 Timer T3 Toggle Latch Output,
TDO
Debug System: JTAG Data Out
T3EUD
GPT1 Timer T3 External Up/Down Control Input,
TMS
Debug System: JTAG Test Mode Selection
T4IN
GPT1 Timer T4 Count/Gate/Reload/Capture Inp
TxD1
ASC0 Clock/Data Output (Async./Sync.),
BRKOUT Debug System: Break Out
T3IN
GPT1 Timer T3 Count/Gate Input
T2IN
GPT1 Timer T2 Count/Gate/Reload/Capture Inp
BRKIN
Debug System: Break In
MRST0
SSC0 Master-Receive/Slave-Transmit In/Out.
MTSR0
SSC0 Master-Transmit/Slave-Receive Out/In.
TxD0
ASC0 Clock/Data Output (Async./Sync.),
EX2IN
Fast External Interrupt 2 Input (alternate pin B)
RxD0
ASC0 Data Input (Async.) or Inp./Outp. (Sync.),
EX2IN
Fast External Interrupt 2 Input (alternate pin A)
BHE
External Memory High Byte Enable Signal,
WRH
External Memory High Byte Write Strobe,
EX3IN
Fast External Interrupt 3 Input (alternate pin B)
SCLK0
SSC0 Master Clock Output / Slave Clock Input.,
EX3IN
Fast External Interrupt 3 Input (alternate pin A)
CLKOUT System Clock Output (= CPU Clock),
FOUT
Programmable Frequency Output
P3.1
39
P3.2
40
P3.3
41
P3.4
42
P3.5
43
P3.6
P3.7
44
45
P3.8
P3.9
P3.10
46
47
48
P3.11
49
P3.12
50
P3.13
51
P3.15
52
Data Sheet
O
I/O
I
I
I
I
O
O
I
I
I
O
O
I
I
I
I/O
I/O
O
I
I/O
I
O
O
I
I/O
I
O
O
12
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
P4
IO
Port 4 is an 8-bit bidirectional I/O port. Each pin can be
programmed for input (output driver in high-impedance
state) or output (configurable as push/pull or open drain
driver). The input threshold of Port 4 is selectable (standard
or special).
Port 4 can be used to output the segment address lines, the
optional chip select lines, and for serial interface lines:1)
A16
Least Significant Segment Address Line,
CS3
Chip Select 3 Output
A17
Segment Address Line,
Chip Select 2 Output
CS2
A18
Segment Address Line,
CS1
Chip Select 1 Output
A19
Segment Address Line,
CS0
Chip Select 0 Output
A20
Segment Address Line,
CAN1_RxD CAN Node B Receive Data Input,
EX5IN
Fast External Interrupt 5 Input (alternate pin B)
A21
Segment Address Line,
CAN0_RxD CAN Node A Receive Data Input,
EX4IN
Fast External Interrupt 4 Input (alternate pin B)
A22
Segment Address Line,
CAN0_TxD CAN Node A Transmit Data Output,
EX5IN
Fast External Interrupt 5 Input (alternate pin A)
A23
Most Significant Segment Address Line,
CAN0_RxD CAN Node A Receive Data Input,
CAN1_TxD CAN Node B Transmit Data Output,
EX4IN
Fast External Interrupt 4 Input (alternate pin A)
P4.0
53
P4.1
54
P4.2
55
P4.3
56
P4.4
57
P4.5
58
P4.6
59
P4.7
60
Data Sheet
O
O
O
O
O
O
O
O
O
I
I
O
I
I
O
O
I
O
I
O
I
13
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
P20
IO
Port 20 is a 5-bit bidirectional I/O port. Each pin can be
programmed for input (output driver in high-impedance
state) or output. The input threshold of Port 20 is selectable
(standard or special).
The following Port 20 pins also serve for alternate functions:
RD
External Memory Read Strobe, activated for
every external instruction or data read access.
WR/WRL External Memory Write Strobe.
In WR-mode this pin is activated for every
external data write access.
In WRL-mode this pin is activated for low byte
data write accesses on a 16-bit bus, and for
every data write access on an 8-bit bus.
ALE
Address Latch Enable Output.
Can be used for latching the address into
external memory or an address latch in the
multiplexed bus modes.
EA
External Access Enable pin.
A low level at this pin during and after Reset
forces the XC164D to latch the configuration
from PORT0 and pin RD, and to begin
instruction execution out of external memory.
A high level forces the XC164D to latch the
configuration from pins RD, ALE, and WR, and
to begin instruction execution out of the internal
program memory. “ROMless” versions must
have this pin tied to ‘0’.
RSTOUT Internal Reset Indication Output.
Is activated asynchronously with an external
hardware reset. It may also be activated
(selectable) synchronously with an internal
software or watchdog reset.
Is deactivated upon the execution of the EINIT
instruction, optionally at the end of reset, or at
any time (before EINIT) via user software.
P20.0
63
O
P20.1
64
O
P20.4
65
O
P20.5
66
I
P20.12
2
O
Note: Port 20 pins may input configuration values (see EA).
Data Sheet
14
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
PORT0
IO
PORT0 consists of the two 8-bit bidirectional I/O ports P0L
and P0H. Each pin can be programmed for input (output
driver in high-impedance state) or output.
In case of an external bus configuration, PORT0 serves as
the address (A) and address/data (AD) bus in multiplexed
bus modes and as the data (D) bus in demultiplexed bus
modes.
Demultiplexed bus modes:
8-bit data bus: P0H = I/O, P0L = D7 - D0
16-bit data bus: P0H = D15 - D8, P0L = D7 - D0
Multiplexed bus modes:
8-bit data bus: P0H = A15 - A8, P0L = AD7 - AD0
16-bit data bus: P0H = AD15 - AD8, P0L = AD7 - AD0
P0L.0 P0L.7
67 74
P0H.0 - 4 P0L.3
7
P0H.4 - 75 P0L.7
78
Note: At the end of an external reset (EA = 0) PORT0 also
may input configuration values
IO
PORT1
P1L.0
P1L.1
P1L.2
P1L.3
P1L.4
P1L.5
P1L.6
P1L.7
79
80
81
82
83
84
85
86
I/O
O
I/O
O
I/O
O
O
I
I/O
P1H
…
Data Sheet
PORT1 consists of the two 8-bit bidirectional I/O ports P1L
and P1H. Each pin can be programmed for input (output
driver in high-impedance state) or output.
PORT1 is used as the 16-bit address bus (A) in
demultiplexed bus modes (also after switching from a
demultiplexed to a multiplexed bus mode).
The following PORT1 pins also serve for alt. functions:
CC60
CAPCOM6: Input / Output of Channel 0
COUT60 CAPCOM6: Output of Channel 0
CC61
CAPCOM6: Input / Output of Channel 1
COUT61 CAPCOM6: Output of Channel 1
CC62
CAPCOM6: Input / Output of Channel 2
COUT62 CAPCOM6: Output of Channel 2
COUT63 Output of 10-bit Compare Channel
CTRAP
CAPCOM6: Trap Input
CTRAP is an input pin with an internal pull-up resistor. A low
level on this pin switches the CAPCOM6 compare outputs to
the logic level defined by software (if enabled).
CC22IO
CAPCOM2: CC22 Capture Inp./Compare Outp.
…continued…
15
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
PORT1
(cont’d)
P1H.0
89
IO
…continued…
I
I
I/O
I
I
I/O
I
I
I/O
I
I/O
I
I
I/O
I
I/O
I
I/O
I
I/O
I
CC6POS0
EX0IN
CC23IO
CC6POS1
EX1IN
MRST1
CC6POS2
EX2IN
MTSR1
T7IN
SCLK1
EX3IN
EX0IN
CC24IO
EX4IN
CC25IO
EX5IN
CC26IO
EX6IN
CC27IO
EX7IN
O
I
XTAL2:
XTAL1:
P1H.1
90
P1H.2
91
P1H.3
92
P1H.4
93
P1H.5
94
P1H.6
95
P1H.7
96
XTAL2
XTAL1
99
100
CAPCOM6: Position 0 Input,
Fast External Interrupt 0 Input (default pin),
CAPCOM2: CC23 Capture Inp./Compare Outp.
CAPCOM6: Position 1 Input,
Fast External Interrupt 1 Input (default pin),
SSC1 Master-Receive/Slave-Transmit In/Out.
CAPCOM6: Position 2 Input,
Fast External Interrupt 2 Input (default pin),
SSC1 Master-Transmit/Slave-Receive Out/Inp.
CAPCOM2: Timer T7 Count Input,
SSC1 Master Clock Output / Slave Clock Input,
Fast External Interrupt 3 Input (default pin),
Fast External Interrupt 0 Input (alternate pin A)
CAPCOM2: CC24 Capture Inp./Compare Outp.,
Fast External Interrupt 4 Input (default pin)
CAPCOM2: CC25 Capture Inp./Compare Outp.,
Fast External Interrupt 5 Input (default pin)
CAPCOM2: CC26 Capture Inp./Compare Outp.,
Fast External Interrupt 6 Input (default pin)
CAPCOM2: CC27 Capture Inp./Compare Outp.,
Fast External Interrupt 7 Input (default pin)
Output of the oscillator amplifier circuit
Input to the oscillator amplifier and input to the
internal clock generator
To clock the device from an external source, drive XTAL1,
while leaving XTAL2 unconnected. Minimum and maximum
high/low and rise/fall times specified in the AC
Characteristics must be observed.
Note: Input pin XTAL1 belongs to the core voltage domain.
Therefore, input voltages must be within the range
defined for VDDI.
res
28
–
Pin is reserved and should be connected to VDDP or VSSP
res
29
–
Pin is reserved and should be connected to VSSP
Data Sheet
16
V1.2, 2006-08
XC164D
Derivatives
General Device Information
Table 2
Pin Definitions and Functions (cont’d)
Symbol Pin
Num.
Input
Outp.
Function
VDDI
35, 97 –
Digital Core Supply Voltage (On-Chip Modules):
+2.5 V during normal operation and idle mode.
Please refer to the Operating Conditions
VDDP
9, 17, –
38,
61, 87
Digital Pad Supply Voltage (Pin Output Drivers):
+5 V during normal operation and idle mode.
Please refer to the Operating Conditions
VSSI
VSSP
34, 98 –
Digital Ground.
Connect decoupling capacitors to adjacent VDD/VSS pin pairs
as close as possible to the pins.
All VSS pins must be connected to the ground-line or groundplane.
8, 16, –
37,
62, 88
1) The CAN interface lines are assigned to ports P4 and P9 under software control.
Data Sheet
17
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3
Functional Description
The architecture of the XC164D combines advantages of RISC, CISC, and DSP
processors with an advanced peripheral subsystem in a very well-balanced way. In
addition, the on-chip memory blocks allow the design of compact systems-on-silicon with
maximum performance (computing, control, communication).
The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data
SRAM) and the set of generic peripherals are connected to the CPU via separate buses.
Another bus, the LXBus, connects additional on-chip resources as well as external
resources (see Figure 3).
This bus structure enhances the overall system performance by enabling the concurrent
operation of several subsystems of the XC164D.
The following block diagram gives an overview of the different on-chip components and
of the advanced, high bandwidth internal bus structure of the XC164D.
PSRAM
DPRAM
DSRAM
Flash / ROM
64/128 KBytes
DMU
EBC
PMU
ProgMem
CPU
XBUS Control
External Bus
Control
C166SV2-Core
OCDS
Debug Support
XTAL
Osc / PLL
Clock Generation
RTC
WDT
Interrupt & PEC
Interrupt Bus
Peripheral Data Bus
GPT
T2
ASC0 ASC1
(USART)
(USART)
SSC0
SSC1
(SPI)
(SPI)
T3
CC1
CC2
CC6
T0
T7
T12
T1
T8
T13
Twin
CAN
T4
A B
T5
T6
P 20 Port 9
5
BRGen
BRGen
Port 5
6
14
BRGen
BRGen
Port 4
8
Port 3
PORT1
PORT0
14
16
16
mcb04323_x4d16r
Figure 3
Data Sheet
Block Diagram
18
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.1
Memory Subsystem and Organization
The memory space of the XC164D is configured in a Von Neumann architecture, which
means that all internal and external resources, such as code memory, data memory,
registers and I/O ports, are organized within the same linear address space. This
common memory space includes 16 Mbytes and is arranged as 256 segments of
64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each.
The entire memory space can be accessed bytewise or wordwise. Portions of the
on-chip DPRAM and the register spaces (E/SFR) have additionally been made directly
bitaddressable.
The internal data memory areas and the Special Function Register areas (SFR and
ESFR) are mapped into segment 0, the system segment.
The Program Management Unit (PMU) handles all code fetches and, therefore, controls
accesses to the program memories, such as Flash memory, and PSRAM.
The Data Management Unit (DMU) handles all data transfers and, therefore, controls
accesses to the DSRAM and the on-chip peripherals.
Both units (PMU and DMU) are connected via the high-speed system bus to exchange
data. This is required if operands are read from program memory, code or data is written
to the PSRAM, code is fetched from external memory, or data is read from or written to
external resources, including peripherals on the LXBus (such as TwinCAN). The system
bus allows concurrent two-way communication for maximum transfer performance.
64/128 Kbytes1) of on-chip Flash memory or mask-programmable ROM store code
or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors, one
32-Kbyte sector, and one 64-Kbyte sector. Each sector can be separately write
protected2), erased and programmed (in blocks of 128 Bytes). The complete Flash or
ROM area can be read-protected. A password sequence temporarily unlocks protected
areas. The Flash module combines very fast 64-bit one-cycle read accesses with
protected and efficient writing algorithms for programming and erasing. Thus, program
execution out of the internal Flash results in maximum performance. Dynamic error
correction provides extremely high read data security for all read accesses.
For timing characteristics, please refer to Section 4.3.2.
2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data.
The PSRAM is accessed via the PMU and is therefore optimized for code fetches.
2/4 Kbytes1) of on-chip Data SRAM (DSRAM) are provided as a storage for general
user data. The DSRAM is accessed via the DMU and is therefore optimized for data
accesses.
2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user
defined variables, for the system stack, and general purpose register banks. A register
1) Depends on the respective derivative. The derivatives are listed in Table 1.
2) Each two 8-Kbyte sectors are combined for write-protection purposes.
Data Sheet
19
V1.2, 2006-08
XC164D
Derivatives
Functional Description
bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, …, RL7,
RH7) so-called General Purpose Registers (GPRs).
The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR,
any location in the DPRAM is bitaddressable.
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are
used for controlling and monitoring functions of the different on-chip units. Unused SFR
addresses are reserved for future members of the XC166 Family. Therefore, they should
either not be accessed, or written with zeros, to ensure upward compatibility.
In order to meet the needs of designs where more memory is required than is provided
on chip, up to 12 Mbytes (approximately, see Table 3) of external RAM and/or ROM can
be connected to the microcontroller.
Table 3
XC164D Memory Map1)
Address Area
Start Loc.
End Loc.
Area Size2)
Notes
Flash register space
FF’F000H
FF’FFFFH
4 Kbytes
Flash only3)
Reserved (Acc. trap)
F8’0000H
FF’EFFFH
< 0.5 Mbytes Minus Flash register
space
Reserved for PSRAM
E0’0800H
F7’FFFFH
< 1.5 Mbytes Minus PSRAM
Program SRAM
E0’0000H
E0’07FFH
2 Kbytes
Maximum
Reserved for program
memory
C2’0000H
DF’FFFFH
< 2 Mbytes
Minus Flash
Program Flash/ROM
C0’0000H
C1’FFFFH
128 Kbytes
4)
Reserved
BF’0000H
BF’FFFFH
64 Kbytes
–
External memory area 40’0000H
BE’FFFFH
< 8 Mbytes
Minus reserved
segment
External IO area5)
20’0800H
3F’FFFFH
< 2 Mbytes
Minus TwinCAN
TwinCAN registers
20’0000H
20’07FFH
2 Kbytes
–
External memory area 01’0000H
1F’FFFFH
< 2 Mbytes
Minus segment 0
Data RAMs and SFRs 00’8000H
00’FFFFH
32 Kbytes
Partly used4)
External memory area 00’0000H
00’7FFFH
32 Kbytes
–
1) Accesses to the shaded areas generate external bus accesses.
2) The areas marked with “> 100 years).
Alarm interrupt for wake-up on a defined time.
Data Sheet
38
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.10
Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)
The Asynchronous/Synchronous Serial Interfaces ASC0/ASC1 (USARTs) provide serial
communication with other microcontrollers, processors, terminals or external peripheral
components. They are upward compatible with the serial ports of the Infineon 8-bit
microcontroller families and support full-duplex asynchronous communication and halfduplex synchronous communication. A dedicated baud rate generator with a fractional
divider precisely generates all standard baud rates without oscillator tuning. For
transmission, reception, error handling, and baudrate detection 5 separate interrupt
vectors are provided.
In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted
or received, preceded by a start bit and terminated by one or two stop bits. For
multiprocessor communication, a mechanism to distinguish address from data bytes has
been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to
115.2 kbit/s with fixed or programmable IrDA pulse width are supported.
In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift
clock which is generated by the ASC0/1. The LSB is always shifted first.
In both modes, transmission and reception of data is FIFO-buffered. An autobaud
detection unit allows to detect asynchronous data frames with its baudrate and mode
with automatic initialization of the baudrate generator and the mode control bits.
A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on
transmission or be checked on reception. Framing error detection allows to recognize
data frames with missing stop bits. An overrun error will be generated, if the last
character received has not been read out of the receive buffer register at the time the
reception of a new character is complete.
Summary of Features
•
•
•
•
•
Full-duplex asynchronous operating modes
– 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
– Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
– Multiprocessor mode for automatic address/data byte detection
– Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
– Loop-back capability
– Auto baudrate detection
Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
Buffered transmitter/receiver with FIFO support (8 entries per direction)
Loop-back option available for testing purposes
Interrupt generation on transmitter buffer empty condition, last bit transmitted
condition, receive buffer full condition, error condition (frame, parity, overrun error),
start and end of an autobaud detection
Data Sheet
39
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.11
High Speed Synchronous Serial Channels (SSC0/SSC1)
The High Speed Synchronous Serial Channels SSC0/SSC1 support full-duplex and halfduplex synchronous communication. It may be configured so it interfaces with serially
linked peripheral components, full SPI functionality is supported.
A dedicated baud rate generator allows to set up all standard baud rates without
oscillator tuning. For transmission, reception and error handling three separate interrupt
vectors are provided.
The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift
clock which can be generated by the SSC (master mode) or by an external master (slave
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection
of shifting and latching clock edges as well as the clock polarity.
A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. Transmit error and receive error supervise the correct
handling of the data buffer. Phase error and baudrate error detect incorrect serial data.
Summary of Features
•
•
•
•
•
•
•
Master or Slave mode operation
Full-duplex or Half-duplex transfers
Baudrate generation from 20 Mbit/s to 305.18 bit/s (@ 40 MHz)
Flexible data format
– Programmable number of data bits: 2 to 16 bits
– Programmable shift direction: LSB-first or MSB-first
– Programmable clock polarity: idle low or idle high
– Programmable clock/data phase: data shift with leading or trailing clock edge
Loop back option available for testing purposes
Interrupt generation on transmitter buffer empty condition, receive buffer full
condition, error condition (receive, phase, baudrate, transmit error)
Three pin interface with flexible SSC pin configuration
Data Sheet
40
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.12
TwinCAN Module
The integrated TwinCAN module handles the completely autonomous transmission and
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),
i.e. the on-chip TwinCAN module can receive and transmit standard frames with 11-bit
identifiers as well as extended frames with 29-bit identifiers.
Two Full-CAN nodes share the TwinCAN module’s resources to optimize the CAN bus
traffic handling and to minimize the CPU load. The module provides up to 32 message
objects, which can be assigned to one of the CAN nodes and can be combined to FIFOstructures. Each object provides separate masks for acceptance filtering.
The flexible combination of Full-CAN functionality and FIFO architecture reduces the
efforts to fulfill the real-time requirements of complex embedded control applications.
Improved CAN bus monitoring functionality as well as the number of message objects
permit precise and comfortable CAN bus traffic handling.
Gateway functionality allows automatic data exchange between two separate CAN bus
systems, which reduces CPU load and improves the real time behavior of the entire
system.
The bit timing for both CAN nodes is derived from the master clock and is programmable
up to a data rate of 1 Mbit/s. Each CAN node uses two pins of Port 4 or Port 9 to interface
to an external bus transceiver. The interface pins are assigned via software.
TwinCAN Module Kernel
Clock
Control
Address
Decoder
Interrupt
Control
fCAN
CAN
Node A
CAN
Node B
Message
Object
Buffer
TxDCA
RxDCA
Port
Control
TxDCB
RxDCB
TwinCAN Control
MCB05567
Figure 10
Data Sheet
TwinCAN Module Block Diagram
41
V1.2, 2006-08
XC164D
Derivatives
Functional Description
Summary of Features
•
•
•
•
•
•
•
CAN functionality according to CAN specification V2.0 B active.
Data transfer rate up to 1 Mbit/s
Flexible and powerful message transfer control and error handling capabilities
Full-CAN functionality and Basic CAN functionality for each message object
32 flexible message objects
– Assignment to one of the two CAN nodes
– Configuration as transmit object or receive object
– Concatenation to a 2-, 4-, 8-, 16-, or 32-message buffer with FIFO algorithm
– Handling of frames with 11-bit or 29-bit identifiers
– Individual programmable acceptance mask register for filtering for each object
– Monitoring via a frame counter
– Configuration for Remote Monitoring Mode
Up to eight individually programmable interrupt nodes can be used
CAN Analyzer Mode for bus monitoring is implemented
Note: When a CAN node has the interface lines assigned to Port 4, the segment address
output on Port 4 must be limited. CS lines can be used to increase the total amount
of addressable external memory.
Data Sheet
42
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.13
Watchdog Timer
The Watchdog Timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning for longer periods of time.
The Watchdog Timer is always enabled after a reset of the chip, and can be disabled
until the EINIT instruction has been executed (compatible mode), or it can be disabled
and enabled at any time by executing instructions DISWDT and ENWDT (enhanced
mode). Thus, the chip’s start-up procedure is always monitored. The software has to be
designed to restart the Watchdog Timer before it overflows. If, due to hardware or
software related failures, the software fails to do so, the Watchdog Timer overflows and
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow
external hardware components to be reset.
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by
2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified
reload value (stored in WDTREL) in order to allow further variation of the monitored time
interval. Each time it is serviced by the application software, the high byte of the
Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between
13 µs and 419 ms can be monitored (@ 40 MHz).
The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).
Data Sheet
43
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.14
Clock Generation
The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers
to generate the clock signals for the XC164D with high flexibility. The master clock fMC is
the reference clock signal, and is used for TwinCAN and is output to the external system.
The CPU clock fCPU and the system clock fSYS are derived from the master clock either
directly (1:1) or via a 2:1 prescaler (fSYS = fCPU = fMC / 2). See also Section 4.3.1.
The on-chip oscillator can drive an external crystal or accepts an external clock signal.
The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable
factor) or can be divided by a programmable prescaler factor.
If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent
clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is
independent from the XTAL1 clock. When the expected oscillator clock transitions are
missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node
and supplies the CPU with an emergency clock, the PLL clock signal. Under these
circumstances the PLL will oscillate with its basic frequency.
The oscillator watchdog can be disabled by switching the PLL off. This reduces power
consumption, but also no interrupt request will be generated in case of a missing
oscillator clock.
Note: At the end of an external reset (EA = ‘0’) the oscillator watchdog may be disabled
via hardware by (externally) pulling the RD line low upon a reset, similar to the
standard reset configuration.
3.15
Parallel Ports
The XC164D provides up to 79 I/O lines which are organized into six input/output ports
and one input port. All port lines are bit-addressable, and all input/output lines are
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O
ports are true bidirectional ports which are switched to high impedance state when
configured as inputs. The output drivers of some I/O ports can be configured (pin by pin)
for push/pull operation or open-drain operation via control registers. During the internal
reset, all port pins are configured as inputs (except for pin RSTOUT).
The edge characteristics (shape) and driver characteristics (output current) of the port
drivers can be selected via registers POCONx.
The input threshold of some ports is selectable (TTL or CMOS like), where the special
CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The
input threshold may be selected individually for each byte of the respective ports.
All port lines have programmable alternate input or output functions associated with
them. All port lines that are not used for these alternate functions may be used as general
purpose IO lines.
Data Sheet
44
V1.2, 2006-08
XC164D
Derivatives
Functional Description
Table 7
Summary of the XC164D’s Parallel Ports
Port
Control
Alternate Functions
PORT0
Pad drivers
Address/Data lines or data lines1)
PORT1
Pad drivers
Address lines2)
Capture inputs or compare outputs,
Serial interface lines,
Fast external interrupt inputs
Port 3
Pad drivers,
Open drain,
Input threshold
Timer control signals, serial interface lines,
Optional bus control signal BHE/WRH,
System clock output CLKOUT (or FOUT),
Debug interface lines
Port 4
Pad drivers,
Open drain,
Input threshold
Segment address lines3)
Optional chip select signals
Port 5
–
Timer control signals
Port 9
Pad drivers,
Open drain,
Input threshold
Capture inputs or compare outputs
Pad drivers,
Open drain
Bus control signals RD, WR/WRL, ALE,
External access enable pin EA,
Reset indication output RSTOUT
Port 20
CAN interface lines4)
CAN interface lines4)
1) For multiplexed bus cycles.
2) For demultiplexed bus cycles.
3) For more than 64 Kbytes of external resources.
4) Can be assigned by software.
Data Sheet
45
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.16
Power Management
The XC164D provides several means to control the power it consumes either at a given
time or averaged over a certain timespan. Three mechanisms can be used (partly in
parallel):
•
•
•
Power Saving Modes switch the XC164D into a special operating mode (control via
instructions).
Idle Mode stops the CPU while the peripherals can continue to operate.
Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may
optionally continue running). Sleep Mode can be terminated by external interrupt
signals.
Clock Generation Management controls the distribution and the frequency of
internal and external clock signals. While the clock signals for currently inactive parts
of logic are disabled automatically, the user can reduce the XC164D’s CPU clock
frequency which drastically reduces the consumed power.
External circuitry can be controlled via the programmable frequency output FOUT.
Peripheral Management permits temporary disabling of peripheral modules (control
via register SYSCON3). Each peripheral can separately be disabled/enabled.
The on-chip RTC supports intermittent operation of the XC164D by generating cyclic
wake-up signals. This offers full performance to quickly react on action requests while
the intermittent sleep phases greatly reduce the average power consumption of the
system.
Data Sheet
46
V1.2, 2006-08
XC164D
Derivatives
Functional Description
3.17
Instruction Set Summary
Table 8 lists the instructions of the XC164D in a condensed way.
The various addressing modes that can be used with a specific instruction, the operation
of the instructions, parameters for conditional execution of instructions, and the opcodes
for each instruction can be found in the “Instruction Set Manual”.
This document also provides a detailed description of each instruction.
Table 8
Instruction Set Summary
Mnemonic
Description
Bytes
ADD(B)
Add word (byte) operands
2/4
ADDC(B)
Add word (byte) operands with Carry
2/4
SUB(B)
Subtract word (byte) operands
2/4
SUBC(B)
Subtract word (byte) operands with Carry
2/4
MUL(U)
(Un)Signed multiply direct GPR by direct GPR
(16- × 16-bit)
2
DIV(U)
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2
DIVL(U)
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2
CPL(B)
Complement direct word (byte) GPR
2
NEG(B)
Negate direct word (byte) GPR
2
AND(B)
Bitwise AND, (word/byte operands)
2/4
OR(B)
Bitwise OR, (word/byte operands)
2/4
XOR(B)
Bitwise exclusive OR, (word/byte operands)
2/4
BCLR/BSET
Clear/Set direct bit
2
BMOV(N)
Move (negated) direct bit to direct bit
4
BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit
4
BCMP
Compare direct bit to direct bit
4
BFLDH/BFLDL
Bitwise modify masked high/low byte of bit-addressable
direct word memory with immediate data
4
CMP(B)
Compare word (byte) operands
2/4
CMPD1/2
Compare word data to GPR and decrement GPR by 1/2
2/4
CMPI1/2
Compare word data to GPR and increment GPR by 1/2
2/4
PRIOR
Determine number of shift cycles to normalize direct
word GPR and store result in direct word GPR
2
SHL/SHR
Shift left/right direct word GPR
2
Data Sheet
47
V1.2, 2006-08
XC164D
Derivatives
Functional Description
Table 8
Instruction Set Summary (cont’d)
Mnemonic
Description
Bytes
ROL/ROR
Rotate left/right direct word GPR
2
ASHR
Arithmetic (sign bit) shift right direct word GPR
2
MOV(B)
Move word (byte) data
2/4
MOVBS/Z
Move byte operand to word op. with sign/zero extension
2/4
JMPA/I/R
Jump absolute/indirect/relative if condition is met
4
JMPS
Jump absolute to a code segment
4
JB(C)
Jump relative if direct bit is set (and clear bit)
4
JNB(S)
Jump relative if direct bit is not set (and set bit)
4
CALLA/I/R
Call absolute/indirect/relative subroutine if condition is met 4
CALLS
Call absolute subroutine in any code segment
4
PCALL
Push direct word register onto system stack and call
absolute subroutine
4
TRAP
Call interrupt service routine via immediate trap number
2
PUSH/POP
Push/pop direct word register onto/from system stack
2
SCXT
Push direct word register onto system stack and update
register with word operand
4
RET(P)
Return from intra-segment subroutine
(and pop direct word register from system stack)
2
RETS
Return from inter-segment subroutine
2
RETI
Return from interrupt service subroutine
2
SBRK
Software Break
2
SRST
Software Reset
4
IDLE
Enter Idle Mode
4
PWRDN
Enter Power Down Mode (supposes NMI-pin being low)
4
SRVWDT
Service Watchdog Timer
4
DISWDT/ENWDT
Disable/Enable Watchdog Timer
4
EINIT
End-of-Initialization Register Lock
4
ATOMIC
Begin ATOMIC sequence
2
EXTR
Begin EXTended Register sequence
2
EXTP(R)
Begin EXTended Page (and Register) sequence
2/4
EXTS(R)
Begin EXTended Segment (and Register) sequence
2/4
Data Sheet
48
V1.2, 2006-08
XC164D
Derivatives
Functional Description
Table 8
Instruction Set Summary (cont’d)
Mnemonic
Description
Bytes
NOP
Null operation
2
CoMUL/CoMAC
Multiply (and accumulate)
4
CoADD/CoSUB
Add/Subtract
4
Co(A)SHR
(Arithmetic) Shift right
4
CoSHL
Shift left
4
CoLOAD/STORE
Load accumulator/Store MAC register
4
CoCMP
Compare
4
CoMAX/MIN
Maximum/Minimum
4
CoABS/CoRND
Absolute value/Round accumulator
4
CoMOV
Data move
4
CoNEG/NOP
Negate accumulator/Null operation
4
Data Sheet
49
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4
Electrical Parameters
4.1
General Parameters
Table 9
Absolute Maximum Ratings
Parameter
Symbol
Limit Values
Unit
Notes
Min.
Max.
TST
TJ
VDDI
-65
150
°C
1)
-40
150
°C
under bias
-0.5
3.25
V
–
Voltage on VDDP pins with
respect to ground (VSS)
VDDP
-0.5
6.2
V
–
Voltage on any pin with
respect to ground (VSS)
VIN
-0.5
VDDP + 0.5 V
2)
Input current on any pin
during overload condition
–
-10
10
mA
–
Absolute sum of all input
currents during overload
condition
–
–
|100|
mA
–
Storage temperature
Junction temperature
Voltage on VDDI pins with
respect to ground (VSS)
1) Moisture Sensitivity Level (MSL) 3, conforming to Jedec J-STD-020C for 260 °C for PG-TQFP-100-5, and
240 °C for P-TQFP-100-16.
2) Input pin XTAL1 belongs to the core voltage domain. Therefore, input voltages must be within the range
defined for VDDI.
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the
voltage on VDDP pins with respect to ground (VSS) must not exceed the values
defined by the absolute maximum ratings.
Data Sheet
50
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
Operating Conditions
The following operating conditions must not be exceeded to ensure correct operation of
the XC164D. All parameters specified in the following sections refer to these operating
conditions, unless otherwise noticed.
Table 10
Operating Condition Parameters
Parameter
Symbol
Limit Values
Min.
Max.
Unit Notes
Digital supply voltage for
the core
VDDI
2.35
2.7
V
Active mode,
fCPU = fCPUmax1)2)
Digital supply voltage for
IO pads
VDDP
4.4
5.5
V
Active mode2)3)
-0.5
–
V
VDDP - VDDI4)
V
Reference voltage
Supply Voltage Difference ∆VDD
Digital ground voltage
VSS
IOV
0
-5
5
mA
Per IO pin5)6)
-2
5
mA
Per Port 5 input
pin5)6)
Overload current coupling KOVA
factor for Port 5 inputs7)
–
1.0 × 10-4 –
–
1.5 × 10-3 –
Overload current coupling KOVD
factor for digital I/O pins7)
–
5.0 × 10-3 –
–
1.0 × 10-2 –
Absolute sum of overload
currents
Σ|IOV|
–
50
mA
6)
External Load
Capacitance
CL
–
50
pF
Pin drivers in
default mode8)
Ambient temperature
TA
–
–
°C
see Table 1
Overload current
IOV > 0
IOV < 0
IOV > 0
IOV < 0
1) fCPUmax = 40 MHz for devices marked … 40F, fCPUmax = 20 MHz for devices marked … 20F.
2) External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have
reached the operating range.
3) The specified voltage range is allowed for operation. The range limits may be reached under extreme
operating conditions. However, specified parameters, such as leakage currents, refer to the standard
operating voltage range of VDDP = 4.75 V to 5.25 V.
4) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down,
and power-save modes.
Data Sheet
51
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin
exceeds the specified range: VOV > VDDP + 0.5 V (IOV > 0) or VOV < VSS - 0.5 V (IOV < 0). The absolute sum of
input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the
specified limits.
Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR,
etc.
6) Not subject to production test - verified by design/characterization.
7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error
current adds to the respective pin’s leakage current (IOZ). The amount of error current depends on the overload
current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse
compared to the polarity of the overload current that produces it.
The total current through a pin is |ITOT| = |IOZ| + (|IOV| × KOV).
8) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output
current may lead to increased delays or reduced driving capability (CL).
Parameter Interpretation
The parameters listed in the following partly represent the characteristics of the XC164D
and partly its demands on the system. To aid in interpreting the parameters right, when
evaluating them for a design, they are marked in column “Symbol”:
CC (Controller Characteristics):
The logic of the XC164D will provide signals with the respective characteristics.
SR (System Requirement):
The external system must provide signals with the respective characteristics to the
XC164D.
Data Sheet
52
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.2
Table 11
DC Parameters
DC Characteristics (Operating Conditions apply)1)
Parameter
Symbol
Limit Values
Min.
Max.
Unit Test Condition
Input low voltage TTL
(all except XTAL1)
VIL
SR
-0.5
0.2 × VDDP V
- 0.1
–
Input low voltage
XTAL12)
VILC
SR
-0.5
0.3 × VDDI
V
–
Input low voltage
(Special Threshold)
VILS
SR
-0.5
0.45 ×
V
3)
Input high voltage TTL VIH
(all except XTAL1)
SR
0.2 × VDDP
+ 0.9
VDDP
VDDP + 0.5 V
–
Input high voltage
XTAL12)
VIHC
SR
0.7 × VDDI
VDDI + 0.5 V
–
Input high voltage
(Special Threshold)
VIHS
SR
0.8 × VDDP VDDP + 0.5 V
- 0.2
3)
Input Hysteresis
(Special Threshold)
HYS
0.04 ×
VDDP in [V],
Output low voltage
VOL
–
V
VDDP
CC –
–
6)
Output high voltage
VOH
Series resistance = 0 Ω3)
1.0
V
0.45
V
CC VDDP - 1.0 –
VDDP -
V
–
V
±300
nA
0 V < VIN < VDDP,
TA ≤ 125 °C
±200
nA
0 V < VIN < VDDP,
TA ≤ 85 °C14)
±500
nA
–
-10
µA
-100
–
µA
–
10
µA
120
–
µA
0.45 V < VIN <
VDDP
VIN = VIHmin
VIN = VILmax
VIN = VILmax
VIN = VIHmin
0.45
Input leakage current
(Port 5)7)
IOZ1
Input leakage current
(all other8))7)
IOZ2
Configuration pull-up
current9)
ICPUH10)
ICPUL11)
ICPDL10)
ICPDH11)
Configuration pulldown current12)
Data Sheet
IOL ≤ IOLmax4)
IOL ≤ IOLnom4)5)
IOH ≥ IOHmax4)
IOH ≥ IOHnom4)5)
CC –
CC –
53
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
Table 11
DC Characteristics (Operating Conditions apply)1) (cont’d)
Parameter
Symbol
Limit Values
Min.
Max.
Unit Test Condition
Level inactive hold
current13)
ILHI10)
–
-10
µA
Level active hold
current13)
ILHA11)
-100
–
µA
VOUT = 0.5 ×
VDDP
VOUT = 0.45 V
XTAL1 input current
IIL
CIO
CC –
±20
µA
0 V < VIN < VDDI
CC –
10
pF
–
Pin capacitance14)
(digital inputs/outputs)
1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
2) If XTAL1 is driven by a crystal, reaching an amplitude (peak to peak) of 0.4 × VDDI is sufficient.
3) This parameter is tested for P3, P4, P9.
4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see
Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL → VSS,
VOH → VDDP). However, only the levels for nominal output currents are guaranteed.
6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective
output will float and the voltage results from the external circuitry.
7) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to
the definition of the overload coupling factor KOV.
8) The driver of P3.15 is designed for faster switching, because this pin can deliver the reference clock for the
bus interface (CLKOUT). The maximum leakage current for P3.15 is, therefore, increased to 1 µA.
9) This specification is valid during Reset for configuration on RD, WR, EA, PORT0
10) The maximum current may be drawn while the respective signal line remains inactive.
11) The minimum current must be drawn to drive the respective signal line active.
12) This specification is valid during Reset for configuration on ALE.
13) This specification is valid during Reset for pins P4.3-0, which can act as CS outputs, and for P3.12.
14) Not subject to production test - verified by design/characterization.
Table 12
Current Limits for Port Output Drivers
Port Output Driver
Mode
Maximum Output Current
(IOLmax, -IOHmax)1)
Nominal Output Current
(IOLnom, -IOHnom)
Strong driver
10 mA
2.5 mA
Medium driver
4.0 mA
1.0 mA
Weak driver
0.5 mA
0.1 mA
Data Sheet
54
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
1) An output current above |IOXnom| may be drawn from up to three pins at the same time.
For any group of 16 neighboring port output pins the total output current in each direction (ΣIOL and Σ-IOH) must
remain below 50 mA.
Table 13
Power Consumption XC164D (Operating Conditions apply)
Parameter
SymLimit Values
bol
Min.
Max.
Unit Test Condition
Power supply current (active)
with all peripherals active
IDDI
–
15 +
2.6 × fCPU
mA
fCPU in [MHz]1)2)
Pad supply current
IDDP
IIDX
–
5
mA
3)
–
15 +
1.2 × fCPU
mA
fCPU in [MHz]2)
128,000
× e-α
mA
VDDI = VDDImax6)
TJ in [°C]
0.6 +
0.02 × fOSC
+ IPDL
mA
Idle mode supply current
with all peripherals active
Sleep and Power down mode
supply current caused by
leakage4)
IPDL5) –
Sleep and Power down mode IPDM7) –
supply current caused by
leakage and the RTC running,
clocked by the main oscillator4)
α=
4670 / (273 + TJ)
VDDI = VDDImax
fOSC in [MHz]
1) During Flash programming or erase operations the supply current is increased by max. 5 mA.
2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 11.
These parameters are tested at VDDImax and maximum CPU clock frequency with all outputs disconnected and
all inputs at VIL or VIH.
3) The pad supply voltage pins (VDDP) mainly provides the current consumed by the pin output drivers. A small
amount of current is consumed even though no outputs are driven, because the drivers’ input stages are
switched and also the Flash module draws some power from the VDDP supply.
4) The total supply current in Sleep and Power down mode is the sum of the temperature dependent leakage
current and the frequency dependent current for RTC and main oscillator (if active).
5) This parameter is determined mainly by the transistor leakage currents. This current heavily depends on the
junction temperature (see Figure 13). The junction temperature TJ is the same as the ambient temperature TA
if no current flows through the port output drivers. Otherwise, the resulting temperature difference must be
taken into account.
6) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP, all outputs (including
pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for TJ ≥ 25 °C.
7) This parameter is determined mainly by the current consumed by the oscillator switched to low gain mode (see
Figure 12). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The
given values refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.
Data Sheet
55
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
I [mA]
IDDImax
140
120
IDDItyp
100
80
IIDXmax
60
IIDXtyp
40
20
10
Figure 11
Data Sheet
20
30
40
fCPU [MHz]
Supply/Idle Current as a Function of Operating Frequency
56
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
I [mA]
3.0
2.0
IPDMmax
IPDMtyp
1.0
4
Figure 12
8
12
16
fOSC [MHz]
Sleep and Power Down Supply Current due to RTC and Oscillator
Running, as a Function of Oscillator Frequency
IPDL
[mA]
1.5
1.0
0.5
-50
Figure 13
Data Sheet
0
50
100
150
TJ [°C]
Sleep and Power Down Leakage Supply Current as a Function of
Temperature
57
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.3
AC Parameters
4.3.1
Definition of Internal Timing
The internal operation of the XC164D is controlled by the internal master clock fMC.
The master clock signal fMC can be generated from the oscillator clock signal fOSC via
different mechanisms. The duration of master clock periods (TCMs) and their variation
(and also the derived external timing) depend on the used mechanism to generate fMC.
This influence must be regarded when calculating the timings for the XC164D.
Phase Locked Loop Operation (1:N)
f OSC
f MC
TCM
Direct Clock Drive (1:1)
f OSC
f MC
TCM
Prescaler Operation (N:1)
f OSC
f MC
TCM
MCT05555
Figure 14
Generation Mechanisms for the Master Clock
Note: The example for PLL operation shown in Figure 14 refers to a PLL factor of 1:4,
the example for prescaler operation refers to a divider factor of 2:1.
The used mechanism to generate the master clock is selected by register PLLCON.
Data Sheet
58
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
CPU and EBC are clocked with the CPU clock signal fCPU. The CPU clock can have the
same frequency as the master clock (fCPU = fMC) or can be the master clock divided by
two: fCPU = fMC / 2. This factor is selected by bit CPSYS in register SYSCON1.
The specification of the external timing (AC Characteristics) depends on the period of the
CPU clock, called “TCP”.
The other peripherals are supplied with the system clock signal fSYS which has the same
frequency as the CPU clock signal fCPU.
Bypass Operation
When bypass operation is configured (PLLCTRL = 0xB) the master clock is derived from
the internal oscillator (input clock signal XTAL1) through the input- and outputprescalers:
fMC = fOSC / ((PLLIDIV+1) × (PLLODIV+1)).
If both divider factors are selected as ‘1’ (PLLIDIV = PLLODIV = ‘0’) the frequency of fMC
directly follows the frequency of fOSC so the high and low time of fMC is defined by the duty
cycle of the input clock fOSC.
The lowest master clock frequency is achieved by selecting the maximum values for both
divider factors:
fMC = fOSC / ((3 + 1) × (14 + 1)) = fOSC / 60.
Phase Locked Loop (PLL)
When PLL operation is configured (PLLCTRL = 11B) the on-chip phase locked loop is
enabled and provides the master clock. The PLL multiplies the input frequency by the
factor F (fMC = fOSC × F) which results from the input divider, the multiplication factor, and
the output divider (F = PLLMUL+1 / (PLLIDIV+1 × PLLODIV+1)). The PLL circuit
synchronizes the master clock to the input clock. This synchronization is done smoothly,
i.e. the master clock frequency does not change abruptly.
Due to this adaptation to the input clock the frequency of fMC is constantly adjusted so it
is locked to fOSC. The slight variation causes a jitter of fMC which also affects the duration
of individual TCMs.
The timing listed in the AC Characteristics refers to TCPs. Because fCPU is derived from
fMC, the timing must be calculated using the minimum TCP possible under the respective
circumstances.
The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is
constantly adjusting its output frequency so it corresponds to the applied input frequency
(crystal or oscillator) the relative deviation for periods of more than one TCP is lower than
for one single TCP (see formula and Figure 15).
This is especially important for bus cycles using waitstates and e.g. for the operation of
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train
Data Sheet
59
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter
is negligible.
The value of the accumulated PLL jitter depends on the number of consecutive VCO
output cycles within the respective timeframe. The VCO output clock is divided by the
output prescaler (K = PLLODIV+1) to generate the master clock signal fMC. Therefore,
the number of VCO cycles can be represented as K × N, where N is the number of
consecutive fMC cycles (TCM).
For a period of N × TCM the accumulated PLL jitter is defined by the deviation DN:
DN [ns] = ±(1.5 + 6.32 × N / fMC); fMC in [MHz], N = number of consecutive TCMs.
So, for a period of 3 TCMs @ 20 MHz and K = 12: D3 = ±(1.5 + 6.32 × 3 / 20) = 2.448 ns.
This formula is applicable for K × N < 95. For longer periods the K × N = 95 value can be
used. This steady value can be approximated by: DNmax [ns] = ±(1.5 + 600 / (K × fMC)).
Acc. jitter DN
K = 12
K=8
K = 15 K = 10
ns
±8
K=6 K=5
±7
±6
±5
10 MHz
20 MHz
±4
±3
±2
±1
0
40 MHz
0 1
5
10
15
20
25
N
MCD05566
Figure 15
Approximated Accumulated PLL Jitter
Note: The bold lines indicate the minimum accumulated jitter which can be achieved by
selecting the maximum possible output prescaler factor K.
Different frequency bands can be selected for the VCO, so the operation of the PLL can
be adjusted to a wide range of input and output frequencies:
Data Sheet
60
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
Table 14
VCO Bands for PLL Operation1)
PLLCON.PLLVB
VCO Frequency Range
Base Frequency Range
00
100 … 150 MHz
20 … 80 MHz
01
150 … 200 MHz
40 … 130 MHz
10
200 … 250 MHz
60 … 180 MHz
11
Reserved
1) Not subject to production test - verified by design/characterization.
Data Sheet
61
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.3.2
On-chip Flash Operation
The XC164D’s Flash module delivers data within a fixed access time (see Table 15).
Accesses to the Flash module are controlled by the PMI and take 1+WS clock cycles,
where WS is the number of Flash access waitstates selected via bitfield WSFLASH in
register IMBCTRL. The resulting duration of the access phase must cover the access
time tACC of the Flash array. Therefore, the required Flash waitstates depend on the
available speed grade as well as on the actual system frequency.
Note: The Flash access waitstates only affect non-sequential accesses. Due to
prefetching mechanisms, the performance for sequential accesses (depending on
the software structure) is only partially influenced by waitstates.
In typical applications, eliminating one waitstate increases the average
performance by 5% … 15%.
Table 15
Flash Characteristics (Operating Conditions apply)
Parameter
Symbol
Flash module access time
Programming time per 128-byte block
Erase time per sector
tACC
tPR
tER
Limit Values
Unit
Min.
Typ.
Max.
CC
–
–
50
ns
CC
–
21)
5
ms
500
ms
CC
–
200
1)
1) Programming and erase time depends on the system frequency. Typical values are valid for 40 MHz.
Example: For an operating frequency of 40 MHz (clock cycle = 25 ns), devices can be
operated with 1 waitstate: ((1+1) × 25 ns) ≥ 50 ns.
Table 16 indicates the interrelation of waitstates and system frequency.
Table 16
Flash Access Waitstates
Required Waitstates
Frequency Range
0 WS (WSFLASH = 00B)
fCPU ≤ 20 MHz
fCPU ≤ 40 MHz
1 WS (WSFLASH = 01B)
Note: The maximum achievable system frequency is limited by the properties of the
respective derivative, i.e. 40 MHz (or 20 MHz for XC164D-xxF20F devices).
Data Sheet
62
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.3.3
Table 17
External Clock Drive XTAL1
External Clock Drive Characteristics (Operating Conditions apply)
Parameter
Symbol
tOSC
t1
t2
t3
t4
Oscillator period
High time2)
Low time2)
Rise time2)
Fall time2)
Limit Values
Unit
Min.
Max.
SR
25
2501)
ns
SR
6
–
ns
SR
6
–
ns
SR
–
8
ns
SR
–
8
ns
1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL.
2) The clock input signal must reach the defined levels VILC and VIHC.
t3
t1
t4
V IHC
V ILC
0.5 V DDI
t2
t OSC
MCT05572
Figure 16
External Clock Drive XTAL1
Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the
oscillator frequency is limited to a range of 4 MHz to 16 MHz.
It is strongly recommended to measure the oscillation allowance (negative
resistance) in the final target system (layout) to determine the optimum
parameters for the oscillator operation. Please refer to the limits specified by the
crystal supplier.
When driven by an external clock signal it will accept the specified frequency
range. Operation at lower input frequencies is possible but is verified by design
only (not subject to production test).
Data Sheet
63
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.3.4
Testing Waveforms
Output delay
Output delay
Hold time
2.0 V
Hold time
Input Signal
(driven by tester)
Output Signal
(measured)
0.8 V
0.45 V
Output timings refer to the rising edge of CLKOUT.
Input timings are calculated from the time, when the input signal reaches
VIH or VIL, respectively.
MCD05556
Figure 17
Input Output Waveforms
VLoad + 0.1 V
Timing
Reference
Points
V Load - 0.1 V
V OH - 0.1 V
V OL + 0.1 V
For timing purposes a port pin is no longer floating when a 100 mV
change from load voltage occurs, but begins to float when a 100 mV
change from the loaded V OH /V OL level occurs (IOH / IOL = 20 mA).
MCA05565
Figure 18
Data Sheet
Float Waveforms
64
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
4.3.5
External Bus Timing
Table 18
CLKOUT Reference Signal
Parameter
Symbol
Limit Values
Min.
tc5
tc6
tc7
tc8
tc9
CLKOUT cycle time
CLKOUT high time
CLKOUT low time
CLKOUT rise time
CLKOUT fall time
Unit
Max.
40/30/251)
CC
ns
CC
8
–
ns
CC
6
–
ns
CC
–
4
ns
CC
–
4
ns
1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to fCPU = 25/33/40 MHz).
For longer periods the relative deviation decreases (see PLL deviation formula).
t C9
t C5
tC6
t C7
tC8
CLKOUT
MCT05571
Figure 19
Data Sheet
CLKOUT Signal Timing
65
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
Variable Memory Cycles
External bus cycles of the XC164D are executed in five subsequent cycle phases (AB,
C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx
registers) to adapt the external bus cycles to the respective external module (memory,
peripheral, etc.).
This table provides a summary of the phases and the respective choices for their
duration.
Table 19
Programmable Bus Cycle Phases (see timing diagrams)
Bus Cycle Phase
Parameter
Address setup phase, the standard duration of this tpAB
phase (1 … 2 TCP) can be extended by 0 … 3 TCP
if the address window is changed
tpC
tpD
tpE
tpF
Command delay phase
Write Data setup/MUX Tristate phase
Access phase
Address/Write Data hold phase
Valid Values Unit
1 … 2 (5)
TCP
0…3
TCP
0…1
TCP
1 … 32
TCP
0…3
TCP
Note: The bandwidth of a parameter (minimum and maximum value) covers the whole
operating range (temperature, voltage) as well as process variations. Within a
given device, however, this bandwidth is smaller than the specified range. This is
also due to interdependencies between certain parameters. Some of these
interdependencies are described in additional notes (see standard timing).
Data Sheet
66
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
Table 20
External Bus Cycle Timing (Operating Conditions apply)
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Output valid delay for:
RD, WR(L/H)
tc10
CC
1
13
ns
Output valid delay for:
BHE, ALE
tc11
CC
-1
7
ns
Output valid delay for:
A23 … A16, A15 … A0 (on PORT1)
tc12
CC
1
16
ns
Output valid delay for:
A15 … A0 (on PORT0)
tc13
CC
3
16
ns
Output valid delay for:
CS
tc14
CC
1
14
ns
Output valid delay for:
D15 … D0 (write data, MUX-mode)
tc15
CC
3
17
ns
Output valid delay for:
D15 … D0 (write data, DEMUX-mode)
tc16
CC
3
17
ns
Output hold time for:
RD, WR(L/H)
tc20
CC
-3
3
ns
Output hold time for:
BHE, ALE
tc21
CC
0
8
ns
Output hold time for:
A23 … A16, A15 … A0 (on PORT0)
tc23
CC
1
13
ns
Output hold time for:
CS
tc24
CC
-3
3
ns
Output hold time for:
D15 … D0 (write data)
tc25
CC
1
13
ns
Input setup time for:
D15 … D0 (read data)
tc30
SR
24
–
ns
Input hold time
D15 … D0 (read data)1)
tc31
SR
-5
–
ns
1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge
of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read
data can be removed after the rising edge of RD.
Note: The shaded parameters have been verified by characterization.
They are not subject to production test.
Data Sheet
67
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
tp AB
tpC
tp D
tp E
tp F
CLKOUT
tc 21
tc 11
ALE
tc 11/tc 14
A23-A16,
BHE, CSx
High Address
tc 20
tc 10
RD
WR(L/H)
tc 31
tc 13
AD15-AD0
(read)
AD15-AD0
(write)
tc 23
Low Address
tc 30
Data In
tc 13
tc 15
Low Address
tc 25
Data Out
MCT05557
Figure 20
Data Sheet
Multiplexed Bus Cycle
68
V1.2, 2006-08
XC164D
Derivatives
Electrical Parameters
tp AB
tp C
tp D
tp E
tp F
CLKOUT
tc 21
tc 11
ALE
tc 11 /tc 14
A23-A0,
BHE, CSx
Address
tc 20
tc 10
RD
WR(L/H)
tc 31
tc 30
D15-D0
(read)
Data In
tc 16
D15-D0
(write)
tc 25
Data Out
MCT05558
Figure 21
Data Sheet
Demultiplexed Bus Cycle
69
V1.2, 2006-08
XC164D
Derivatives
Package and Reliability
5
Package and Reliability
5.1
Packaging
Table 21
Package Parameters
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Notes
Green Package PG-TQFP-100-5
Thermal resistance
junction to case
RΘJC
–
8 / 11
K/W
Flash / ROM
Thermal resistance
junction to leads
RΘJL
–
32 / 37
K/W
Flash / ROM
Standard Package P-TQFP-100-16
Thermal resistance
junction to case
RΘJC
–
7
K/W
Flash
Thermal resistance
junction to leads
RΘJL
–
24
K/W
Flash
Data Sheet
70
V1.2, 2006-08
XC164D
Derivatives
Package and Reliability
C
Seating Plane
24 x 0.5 = 12
0.22 ±0.05
0.08 C 100x
Coplanarity
0.2 MIN.
0.6 ±0.15
(1)
0˚...7˚
12˚
H
.05
0.15 +0
-0.06
0.5
1.6 MAX
0.1±0.05
STAND OFF
1.4 ±0.05
Package Outlines
0.08 M A-B D C 100x
16
0.2 A-B D 100x
141)
0.2 A-B D H 4x
D
14
1)
16
B
A
100
1
Index Marking
1) Does not include plastic or metal protrusion of 0.25 max. per side
Figure 22
PG-TQFP-100-5 (Plastic Green Thin Quad Flat Package)
Data Sheet
71
GPP05614
V1.2, 2006-08
XC164D
Derivatives
Package and Reliability
GPP09189
Figure 23
P-TQFP-100-16 (Plastic Thin Quad Flat Package)
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Data Sheet
72
Dimensions in mm
V1.2, 2006-08
XC164D
Derivatives
Package and Reliability
5.2
Flash Memory Parameters
The data retention time of the XC164D’s Flash memory (i.e. the time after which stored
data can still be retrieved) depends on the number of times the Flash memory has been
erased and programmed.
Table 22
Flash Parameters (XC164D, 128 Kbytes)
Parameter
Data retention time
Symbol
tRET
Flash Erase Endurance NER
Data Sheet
Limit Values
Unit
Notes
103 erase/program
cycles
Min.
Max.
15
–
years
20 × 103
–
cycles data retention time
5 years
73
V1.2, 2006-08
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG